Final Report for Richter’s Predictor: Modeling
Earthquake Damage

Enyu Zhao Yanjun Gu
Department of Computer Science Department of Computer Science
University of Southern California University of Southern California

Los Angeles, CA 90089 Los Angeles, CA 90007
enyuzhaoQusc.edu yanjungu@usc.edu
Abstract

The report presents an algorithmic approach to tackle the Richter’s Predictor: Mod-
eling Earthquake Damage problem, achieving an impressive fl-score of 0.7525.
The algorithm incorporates a range of data preprocessing techniques, including
feature selection based on mutual information, log transformation to normalize
numerical features, geological feature encoding using a neural network embedding,
and Principal Component Analysis to reduce the dataset’s dimensionality. Light-
GBM is selected as the primary training model following a rigorous evaluation
of its performance compared to other models such as Neural Network, XGBoost,
and Catboost. Lastly, Ensemble learning is utilized to combine the predictions of
multiple models, thereby enhancing the algorithm’s generalization ability.

1 Algorithms Used

As one of the inevitable and unpredictable natural catastrophes, strong earthquakes are horrifying
and devastating, shattering houses into ruins and leaving people moaning about their loss. Therefore,
using well-developed machine learning algorithms to predict the damage grade of the houses after
the earthquake is essential. Predicting the status of the house after the terrifying earthquake can be
beneficial for the government as the search and rescue teams can be efficiently dispatched to the most
needed houses and areas at the earliest possible time right after an earthquake was detected. In the
long term, government and insurance companies can exploit the prediction for better risk assessment
and insurance pricing.

With LightGBM [1], XGboost [2] and Catboost [3] being the most popular machine learning al-
gorithms in classification, we will use them to predict the damage grade. With neural networks’
dominant place in today’s machine learning algorithms [4], we will also give it a try.

2 Data Preprocessing

2.1 Mutual Information

Mutual Information measures the mutual dependence between two random variables and is commonly
used in machine learning as a feature selection technique. By quantifying how much information one
variable can provide about another, it identifies variables with higher relevance to the target variable.
One of the significant advantages of Mutual Information is its versatility and robustness. It can handle
both discrete and continuous variables and is relatively insensitive to noise and outliers in the data.
However, it may not always be the optimal feature selection technique for a specific problem and can
be influenced by the curse of dimensionality in high-dimensional datasets.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Normalized Mutual Information

has_superstructure_m

Features

Figure 1: Normalized mutual information of features.

The normalized mutual information of all features is shown in Figure 1. We select the features whose
normalized mutual information > 0.001 as training features.

2.2 Log Transformation

Skewed data in machine learning refers to datasets where the distribution of values in a feature or
target variable is heavily skewed towards one end of the range. Skewed data can create challenges for
machine learning practitioners, including biased models and poor generalization. Machine learning
models may become biased towards the majority class, leading to poor performance on the minority
class. Skewed data can also make it difficult for models to generalize to new data. Log transformation
is a powerful technique for addressing skewed data in machine learning. By applying a logarithmic
function, log transformation can reduce skewness and make the data more normally distributed. This
can help to overcome challenges such as biased models and poor generalization by reducing the
potential for bias towards the majority class in the model. Overall, log transformation is an essential
tool for enhancing the accuracy and performance of machine learning models when dealing with
skewed data.

Figure 2 displays the Kernel Density Estimate plots of numerical features before and after log
transformation. We applied this transformation to our data and saw an improvement in the f1-score
of our machine learning models. Notably, we observed an increase in the F1 score of the Random
Forest, XGBoost, and Catboost models from 0.7264 to 0.7322, from 0.7356 to 0.7359, and from
0.7416 to 0.7421, respectively.

2.3 Feature Embedding

During the process of feature selection using mutual information, we observed a high degree of
interdependence among the 3 hierarchical geologic features, as well as their significant influence on
the target variable, i.e., the damage grade.

However, the acquired data presents the important geologic features only as number identifiers, which
lack the necessary information for determining the exact location of a house. To extract and utilize
the latent information concealed within these features, we employed an autoencoder for encoding the
geologic data. The architecture of the autoencoder model utilized in our study is presented in Figure
3.

An autoencoder is a type of neural network that is used for unsupervised learning, dimensionality
reduction, and feature extraction, Hinton G E, et al. [5]. The main objective of an autoencoder is

count_floors_pre_eq Kernel Density Estimate Plot

age Kernel Density Estimate Plot

area_percentage Kernel Density Estimate Plot

[0 before log transformation
[after log transformation

=3 before log transformation
=3 after log transformation

[0 before log transformation
3 after log transformation

2 0 2 4 6 8 10 12 100 120

feature values

-250 250 500 750 1000 1250

feature values

20 0 20 40 60 80
feature values

height_percentage Kernel Density Estimate Plot count_families Kernel Density Estimate Plot

3 before log transformation
=3 after log transformation

3 before log transformation
3 after log transformation

0 10 20 30 40 -2 0 2 4 6 8 10
feature values feature values

Figure 2: Kernel Density Estimate plots of numerical features.

Input layer (11861)

Relu
Y

hidden(16)

Sigmoid \Sigmnid

geo_2(1416)

geo_1(31)

Output

Figure 3: Structure of autoencoder.

to learn a compressed representation of input data by encoding it into a latent space with different
dimensions and then decoding it back into the required form. In our study, we want to transform the
3 features with different layers of geological identifiers into 16 features.

Following the utilization of the autoencoder, our subsequent LightGBM and neural network models
demonstrated significant performance improvements.

2.4 Principle Component Analysis

Principal Component Analysis (PCA) is a multivariate statistical technique commonly used in data
science and machine learning to reduce the dimensionality of large datasets while retaining as much
of the original variance as possible, Shlens J, et al [6]. PCA is based on the identification of the
principal components in the data, which represent linear combinations of the original variables that
capture the maximum amount of variation in the dataset. These principal components are chosen
such that each one is orthogonal to the others, ensuring that they are independent and capture unique
aspects of the underlying data structure.

In an effort to simplify the dataset without sacrificing valuable information, we employed the use of
Principal Component Analysis (PCA) to perform dimension reduction on the non-geological features.

Input layer (66)

Relu

|
hidden(128)

Relu
v

hidden(128)

Relu
v

hidden(128)

T
Relu
i

hidden(64) ‘

Softmax

¥

Figure 4: Structure of neural network for classification.

Although our results showed that this approach did not yield a significant improvement in our model’s
performance, it notably enhanced the training speed of our models.

3 Model training

In our experiment, we first established a baseline benchmark by training both a neural network
model and a LightGBM model without any data preprocessing techniques. Subsequently, we utilized
our proposed preprocessing methods to train these models again, with the aim of evaluating the
impact of the preprocessing on the models’ performance. Finally, we trained all models on the fully
preprocessed dataset in order to identify the model with the highest level of performance. After data
preprocessing and hyper-parameter tuning, we gained the results listed in Table 1.

3.1 Neural Network Training

Prior to implementing any preprocessing techniques on the given dataset, we established a baseline
benchmark by utilizing a neural network architecture that incorporated all available features. The
network architecture is presented in Figure 4.

Upon evaluation of the neural network model with optimal hyperparameters on the test set, the
fl-score was 0.6614. This score fell significantly below the level of performance deemed acceptable,
indicating that the neural network model requires further optimization in order to achieve satisfactory
results.

A potential optimization method is to utilize the autoencoder. We assessed the efficacy of such method,
which led to an improvement in performance from 0.6614 to 0.7213. Additionally, we implemented
log transformation and feature selection techniques, which resulted in a further improvement in the
neural network’s performance to 0.7301.

3.2 LightGBM Model Training

We initially employed LightGBM as our classification algorithm while concurrently exploring the use
of neural network models as a benchmark. It was observed that the performance of the LightGBM
model was superior to that of the neural network model as shown in Table 1.

Following the implementation of geological feature embedding and subsequent training of the
LightGBM model on the processed dataset, an improvement in performance was observed, with the
fl-score increasing from 0.7237 to 0.7416. Further improvement was attained through the application
of log transformation and feature selection, which resulted in a performance of fl-score reaching
0.7421.

Table 1: Model result

Algorithm Original f1-score Preprocessed fl-score ~ Hyper-parameter tuned
Neural Network 0.6614 0.7301 Null

LightGBM 0.7237 0.7450 0.7490

XGboost 0.7356 0.7432 0.7456

Catboost 0.7416 0.7442 0.7483

In order to improve the performance of our LightGBM model, we conducted a hyperparameter tuning
using cross-validation and grid search techniques. This process allowed us to optimize the parameters
of the model and ultimately resulted in a higher f1-score of 0.7490.

3.3 XGboost Model Training

After exploring the LightGBM decision tree algorithm, we decided to experiment with XGBoost,
another popular framework for classification tasks. Our initial implementation involved applying
only log transformation, which yielded an f1-score of 0.7359. However, we were able to improve this
score to 0.7432 by encoding the geological data with embeddings.

We then conducted a hyperparameter tuning process using grid search, resulting in further improve-
ments to the model’s accuracy. Our final f1-score of 0.7456 was achieved using a learning rate of 0.2,
40 leaves, and a maximum depth of 32.

While our experiments with XGBoost showed improved results, the algorithm’s performance did not
match that of LightGBM. Although we achieved an f1-score of 0.7456, we chose not to invest further
resources into it, as it was not as effective as our primary model.

3.4 Catboost Model Training

Initially, we normalized all numerical data, but this led to a 0.03 decrease in the fl1-score. We then
applied log transformation to address the data’s skewness, resulting in a marginal increase in the
f1-score from 0.7416 to 0.7421.

Subsequently, we investigated the impact of incorporating geological features into the model. We
first tried encoding geological data as categorical features in the Catboost model, which yielded an
fl-score of 0.7436. Alternatively, we leveraged geological embedding, which proved to be more
effective, leading to an fl-score of 0.7442. We also attempted to simultaneously add geological
features as categorical data and apply geological embedding, but this approach fared poorly on the
testing set despite achieving a high training set f1-score of 0.7480. Consequently, we focused solely
on applying geological embedding.

To optimize the model, we conducted a grid search, which resulted in an f1-score of 0.7483 using a
border count of 17, depth of 10, L2 leaf regularization of 5, and a learning rate of 0.07. In conclusion,
Catboost proved to be a competitive alternative to LightGBM for our dataset owing to its efficient
handling of categorical features and its ability to integrate geological information through embedding.

4 Further Improvement

Following the stagnation of the performance of the existing models with a maximum f1-score of
0.7490, we introduced novel techniques to improve the predictive capabilities of our models.

4.1 Ensemble learning LightGBM models

In order to further improve the performance of our model, we utilized a technique known as ensemble
learning. Ensemble learning works by combining multiple individual models into a single, more
powerful model that outperforms any of the individual models alone, Sagi O, et al. [7]. The intuition
behind this is that the individual models may have different strengths and weaknesses, and by
combining them, the weaknesses of one model can be compensated for by the strengths of another.

Table 2: LightGBM Ensemble Performance

Model number Hard-vote f1-score Soft vote f1-score

3 0.7512 0.7515
5 0.7520 0.7525
7 0.7518 0.7518
15 0.7517 0.7517

Table 3: Multiple Model ensemble Performance

Model Ensembled Hard-vote fl1-score Soft vote f1-score
LightGBM,Catboost,XGboost 0.7504 0.7505
LightGBM,Catboost 0.7498 0.7498
LightGBM,XGboost 0.7446 0.7447
XGboost,Catboost 0.7442 0.7445

This leads to a more robust and accurate model that is less prone to overfitting and can generalize
better to unseen data.

Ensemble learning can also reduce the impact of noise and outliers in the data. By combining the
predictions of multiple models, the noise and outliers are less likely to be included in the final result,
as they may be filtered out by some of the individual models.

In practice, we first split the given dataset into 5 folds and trained 5 separate LightGBM models, each
using a unique fold as the test set and the other 4 folds as the training set. We then performed a hard
voting scheme among all 5 models to classify the final test dataset for submission. This approach
helps to reduce overfitting and improve the generalization of the model. Additionally, ensemble
learning has been shown to often outperform single models, which was the case in our experiments.

An alternative method to gain the final prediction is to perform a soft vote. This involves obtaining
probability estimates for each label from each model, and then aggregating these probabilities to
determine the final label prediction.

In our experiments, we applied both voting methods to our models and observed improved perfor-
mance compared to individual models. We conducted tests with various numbers of models to be
trained and the results are presented below.

4.2 Emsemble different models

During our experimentation with ensemble learning, we found that combining multiple classification
algorithms using hard vote or soft vote could further improve the performance of the models. Similar
to the process of ensembling lightGBM models, we partitioned the dataset into K folds, where K
represents the total number of models from all algorithms. We then applied hard vote and soft vote
techniques to combine the predictions from all models and obtain the final classification with the
result shown in Table 3.

From the result we noticed that combing all algorithms’ predictions produces worse performance,
it is hypothesized that the poor performance of some algorithms may have a negative effect on the
"hard" examples, which are those instances where the probability of the correct label is only slightly
higher than the probabilities of the wrong labels.

In addition to ensembling all algorithms together, we also attempted to ensemble the models from
each pair of algorithms. However, our experiments showed that this approach did not improve the
overall performance either.

References

[1] Ke G, Meng Q, Finley T, et al. Lightgbm: A highly efficient gradient boosting decision tree[J]. Advances in
neural information processing systems, 2017, 30.

[2] Chen T, Guestrin C. Xgboost: A scalable tree boosting system[C]//Proceedings of the 22nd acm sigkdd
international conference on knowledge discovery and data mining. 2016: 785-794.

[3] Prokhorenkova L, Gusev G, Vorobev A, et al. CatBoost: unbiased boosting with categorical features[J].
Advances in neural information processing systems, 2018, 31.

[4] Abiodun O I, Jantan A, Omolara A E, et al. State-of-the-art in artificial neural network applications: A
survey[J]. Heliyon, 2018, 4(11): e00938.

[5] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. science, 2006,
313(5786): 504-507.

[6] Shlens J. A tutorial on principal component analysis[J]. arXiv preprint arXiv:1404.1100, 2014.

[7] Sagi O, Rokach L. Ensemble learning: A survey[J]. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 2018, 8(4): e1249.

Appendix
Code instruction

We tested our code on macOS and Windows, it should be noted that macOS with Apple Silicon chips
including M1, M1 pro, M1 Max and M2 won’t support LightGBM so the code should be run on
Windows.

To run our code, the operating folder should be the outer folder itself. Suppose the whole folder is
located at C:/Codes/ FinalProj, then in conda or the terminal, you can enter the folder by using cd
command to C:/ Codes/ FinalProj.

The command to run our code are listed below for different scenarios:
To run neural network:

python main.py --y-onehot --epochs=100 --evaluate

As we didn’t perform any ensemble mechanism on the neural network, you don’t need to set softvote
parameter which will be set in the following models.

To run LightGBM with hard vote and train 5 models to ensemble:

python main.py --algorithm=1gbm --no-y-onehot
--no-evaluate --no-softvote --retrain --ensnum=5

The model files will be stored in Finalproj/[algorithm Jmethod/model/training_time, in this case,it
will be stored in Finalproj/lgbm_method/model/training_time. If you don’t want to retrain the models,
you can take all the models stored in the training_time folder to the [algorithm[method/model folder.
Feel free to toggle around with algorithm, retrain, softvote as we will show some examples below.
The ensnum parameter however, is only supported in LightGBM.

To run catboost with softvote and retrain:

python main.py --algorithm=cat
--no-y-onehot --no-evaluate --softvote --retrain

To run xgboost with softvote and no retrain:

python main.py --algorithm=cat --no-y-onehot
--no-evaluate --softvote --no-retrain

To run an ensemble of different models with softvote:

python main.py --algorithm=ensemble --no-y-onehot
--no-evaluate --softvote --retrain

It’s suggested to run the ensemble algorithm with retrain set to be true since the model that you
want to put in may not be pretrained. And to choose which models to ensemble, you can go to the
/Finalproj/ensemble_runner/ensemble_runner.py to uncomment some choices in the run function.

	Algorithms Used
	Data Preprocessing
	Mutual Information
	Log Transformation
	Feature Embedding
	Principle Component Analysis

	Model training
	Neural Network Training
	LightGBM Model Training
	XGboost Model Training
	Catboost Model Training

	Further Improvement
	Ensemble learning LightGBM models
	Emsemble different models

