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1 Abstract

This study aims to enhance vehicle functionality
by deploying LLM (Large Language Model)-based
copilots on local GPUs. While advanced vehicle
voice assistants like Alexa struggle with complex
multi-step commands, GPUs in electric vehicles
present an opportunity for API call generation us-
ing locally loaded LLMs. We explore the effective-
ness of using local LLMs to understand and exe-
cute complex commands directly on these GPUs
to avoid the latency, costs, and internet reliance of
cloud-based solutions. This approach may signifi-
cantly enhance vehicle functionality by leveraging
the impressive text-to-code and task decomposition
capabilities of modern LLMs.

2 Introduction

Recent advancements in Large Language Models
(LLMs) demonstrate considerable potential to rev-
olutionize human-machine interfaces. With the
impressive text-to-code and task decomposition
capabilities many LL.Ms possess today, it is intrigu-
ing that advanced vehicle voice assistants such as
Siri and Alexa still struggle with complex, multi-
step commands. GPUs for autonomous driving are
often found in electricle vehicles (EVs), but they
remain largely underutilized during normal driving
conditions. This research aims to explore the fea-
sibility of deploying LLM-based agentic vehicle
copilots on local GPUs to understand and execute
complex commands. Ideally, this local approach
will enhance vehicle functionality while minimiz-
ing the cost and latency associated with alternative
cloud-based LLM approach.

3 Related work

3.1 Large Language Models

Recent rapid advancements in LLMs such as Ope-
nAl’s GPT series, Google’s Gemini, and Claude

Opus (OpenAl, 2021, 2024; Google, 2024; An-
thropic, 2024) have transformed natural language
processing. Despite their incredible capabilities,
these models are often resource-intensive and
closed-source. Smaller open-source LLMs like
Llama 2-7B, 3-8B, and Mistral-7B (Touvron et al.,
2023; Jiang et al., 2023) become promising alter-
natives for resource-constrained enviornments.

3.2 LLM Agents

LLMs are increasingly purposed as controllers
for Al agents (Wang et al., 2023), demonstrating
problem-solving, planning, and execution capa-
bilities through techniques like Chain-of-Thought
(Wei et al., 2023) and problem refinement (Xi
et al., 2023). Such agents have been seen to play
roles as a news commentator (Tseng et al., 2023),
medical assistant (Biswas et al., 2023), and per-
sonalized house cleaner (Wu et al., 2023), even
aligning with social norms (Li et al., 2024). In
interactive environments, they excel at few-shot
task decomposition (Song et al., 2023) while long-
term memory enhances their conversational skills
(Zhong et al., 2023). Fine-tuning further boosts
agent performance for specific tasks (Zeng et al.,
2023). Gorilla is a series of models (Patil et al.,
2023) specifically designed for generating func-
tion and API calls. Gorilla OpenFunctions-v2 is
surpassed on this task only by larger models like
GPT-4 variants and Claude 3. We attempt to use
Gorilla as a benchmark due to the similar nature of
its purpose to our task.

3.3 Low-Rank Adaptation (LoRA)

Traditional fine-tuning of LLMs is computationally
demanding. Low-rank adaptation reduces resource
requirements, introducing the option of fine-tuning
on edge devices (Hu et al., 2021). Advancements
like QLoRA and LoRA+ further optimize memory
usage and training speed, enabling performance
gains (Dettmers et al., 2023; Hayou et al., 2024).



4 Problem Description

Current vehicle voice assistants struggle with com-
plex, multi-step commands. This is surprising
given that modern EVs offer unique advantages for
advanced language processing: Resource Avail-
ability: EVs have powerful, often underutilized
GPUs for autonomous driving, offering potential
cost and latency benefits over cloud-based solu-
tions. Communication Infrastructure: Ethernet-
based architectures and API-based protocols in
EVs align well with the text-to-code capabilities
of LLMs, enabling potentially seamless interaction
with vehicle functions.

However, creating effective local LLM-based ve-
hicle copilots involves several challenges: Domain-
specific Dataset Creation: Lack of publicly avail-
able datasets for training and benchmarking LLMs
on vehicle-specific workflows, complicated by pro-
prietary automakers’ APIs. Complex Task Decom-
position: Developing techniques for LLMs to de-
compose complex user commands into executable
sequences of API calls. Model Selection Con-
straints: Optimizing LLMs to operate within the
memory limits of typical vehicle GPUs (16-24GB
of VRAM). Model Performance Benchmarking:
Fine-tuning LLMs for vehicle-specific datasets and
rigorously comparing results against cloud-based
LLM services to evaluate the local LLM approach.

This research aims to address these challenges
and explore the potential for significantly enhanc-
ing the user experience of vehicle voice assistants
using locally deployed LLM-based copilots.

5 Methods

5.1 Data Generation

5.1.1 Dataset Generation

Due to the lack of public datasets for vehicle-
specific APIs, we created a proprietary dataset us-
ing LLM-driven data augmentation (Gemini Ultra).
Entries followed a Q/A format to mimic user com-
mands and API calls. We meticulously validated
each entry for consistent formatting and accuracy.
Similarly, we created a complex-task dataset chain-
ing two to five API calls via the same process.

5.1.2 API Documentation Generation

To better define the scope of the vehicle system
functionalities and distill the model’s capabilities,
we used Gemini Ultra to generate a comprehensive
API documentation in JSON format and verified its
validity manually. This documentation outlined all

endpoints, functions, and values recognized by the
vehicle system. During the second iteration of data
generation, relevant sub-categories from this API
documentation were incorporated into the prompts.
This ensured that newly generated entries remained
within the scope of the model’s capabilities. Any
out-of-scope entries from the initial dataset were
removed and replaced.

5.2 LLM Agent for API Generation
5.2.1 Local Model Selection and Quantization

To better simulate the onboard copilot of an elec-
tric vehicle, the selected LLLMs must be installed
locally and capable of running on the T4 GPU
provided by Google Colab that offers 14.9 GB of
VRAM. Considering the trade-offs between model
size and reasoning capabilities, we limit our se-
lection to LLLMs with around 7 billion parameters.
We choose Mistral 7B, Llama-2 7B, Llama-3 7B,
and M7-7B which is a fine-tuned variant of Mistral
7B that ranks higher than original Mistral 7B on
the Hugging Face OpenLLLM leaderboard. To load
these 7B-level LLMs on the T4 GPU, we apply
4-bit quantization to reduce the memory require-
ments without sacrificing too much performance.

5.2.2 Inference Prompt Engineering

To optimize the LLM’s ability to generate valid
API calls during inference, we focus on careful
prompt engineering. We utilize the API documen-
tation in JSON format and filter it down to relevant
subcategories based on the task at hand. This tai-
lored documentation serves as a critical guardrail
and reference for the LLM.

We pass the question as the user prompt along
with the rest of the prompt to LLMs for API gener-
ation. We then use regular expressions to parse the
API from the raw output and compare it with the
parsed answer from the dataset.

The following shows the input prompt template,
and an sample input prompt is in the appendix:

<API Doc filtered by subcategory> + <Instruc-
tion> + <Q/A Example 1&2> + <Formatting
Rules> + <User Prompt>

5.2.3 Local Model Fine-Tuning

We leveraged fine-tuning to boost the LLMs’ per-
formance for our task. However, it was not plausi-
ble or effective to fine-tune all parameters with the
time and computational resources on hand. We em-
ployed a parameter efficiency fine-tuning method
using QLoRA. The dimensions of the low-rank



matrices are set to 16 and the alpha value to 16.
The maximum sequence length is set to be 2048
and inherited from the pre-trained model. Through
these parameters, we can substantially decrease the
number of trainable parameters, thus enhancing
model efficiency. The temperature of all the mod-
els is set to 0 to maintain stability. We also used
cross-validation and early stopping to mitigate the
problem of overfitting caused by the small dataset.

5.3 Task Decomposition

We performed few-shot evaluation on the best-
performing models using a dataset with 50 com-
plex multi-task commands, adding a decomposi-
tion module to break down commands into indi-
vidual tasks. We explored the following methods:
pure prompt engineering, naive sentence decom-
position, and a LLM submodule. The prompt was
constrained to only output the corresponding valid
API calls for each task in a command with no
further processing on the dataset to examine the
model’s inherent capabilities of completing com-
plex tasks. Adding a submodule to decompose the
input simplifies the problem to a single task and
reduces overall complexity. We first evaluated the
performance with a naive split on the commands by
grammatical rules and punctuation, then compared
its performance with that of a LLM as a task de-
composer. For consistency, we use the same LLM
for both the submodule and evaluation.

5.4 Agentic Reflection Workflow

To enhance the accuracy of API generation, we
incorporated an agentic reflection workflow. Fol-
lowing the initial LLM generation of an API call,
the model received the prompt, API documentation,
and its own prior output along with a new system
prompt. This additional information allowed the
LLM to self-evaluate the generated API in the con-
text of the task and documentation. By leveraging
this self-assessment, the model was then given a
second opportunity to refine its output and produce
a potentially more accurate API call.

6 Experiments

We designed experiments to evaluate the LLMs’
performance on Single Task - where each given
instruction can be fulfilled with a single API call
based on the API documentation generated in Sec-
tion 5.1.2, and also on Task Decomposition - where
each given instruction requires multiple API calls.

6.1 Experimental Setup
6.1.1 Dataset

We utlized the dataset generated as described in
Section 5.1. For Single taskexperiments, we ran-
domly select 50 out of the 120 data entries as the
training set for fine-tuning and use the rest as the
testing set. Due to resource constraints, we didn’t
perform QLoRA fine-tuning for LLMs in Task De-
composition as we don’t have a specific training
set design for that experiment.

6.1.2 Baseline Methods

To establish a comprehensive performance baseline
and quantify the potential performance gap, we
benchmarked the capabilities of prominent cloud-
based large LLMs, GPT-4 and Gemini Pro, using
our evaluation workflow the same as the local small
LLMs. We set the temperature parameter of both
models to be 0 to maximize output consistency.

6.1.3 Evaluation Protocols

We selected prediction accuracy as the evaluation
metric, focusing on the ability of the LLMs to gen-
erate correct and executable API calls based on
the user prompts. We only consider API calls that
100% match the targets after parsing as true posi-
tives in order to simulate the API calling require-
ments in realistic scenarios.

For Single Task, after splitting the generated
dataset as in Section 6.1.1, we tested the perfor-
mance of the chosen small LLMs and the cloud-
based large LLMs with prompts composed from
the template provided in Section 5.2.2. We then per-
formed QLoRA fine-tuning to the small LLMs with
the training dataset. We additionally performed 10-
fold cross-validation for the top 3 small LLMs to
evaluate the effectiveness of fine-tuning.

For Task Decomposition, the top-2 performing
small LLMs in Single Task with few-shot prompt-
ing were chosen as they have demonstrated better
API generation capabilities. We tested the perfor-
mance of the selected small LLMs as well as the
cloud-based LLMs following the same workflow
as Single Task and changing the dataset to compli-
cated instructions.

6.2 Results

Table 1 shows the performance of various models
on the Single Task experiment. Notably:

Llama Limitations: Llama family demonstrates
near zero accuracy under few-shot prompting
which is caused by its output not following the



LLM Few- |LoRA |CV
Shot | (rand) | (10-fold)

Mistral 7B | 63.3% |67.1% | 70.8% + 2.4%
Llama-3 8B |0% 72.9% | 66.7% + 5.6%
M7-7B 53.3% | 55.7% | 59.2% + 2.2%
Llama-2 7B | 0% 31.4% | 22.5% + 4.0%
Llama-2 13B |3.3% |37.1% |/

Gorilla 10.0% |/ /

Gemini-Pro |94.2% |/ /

GPT-4 94.2% |/ /

Table 1: Single Task API Generation Accuracy

given format and being unparseable with regular
expressions.

Mistral vs. M7-7B: Mistral 7B has a decent
performance under few-shot prompting conditions
and is better than M7-7B which has a higher Hug-
ging Face OpenLLM score.This highlights that API
generation benefits from domain-specific strengths
rather than solely relying on general language ca-
pabilities.

Task-specific Gorilla:: Gorilla’s poor perfor-
mance suggests that API-centric training, while
beneficial for specific functions, may hinder its lan-
guage comprehension for broader tasks that require
understanding and integrating API documentations
and definitions that vary from its training format.

Fine-Tuning Impact: After fine-tuning with
QLoRA, all three models have shown improved
performance, with Llama-3 8B’s accuracy reach-
ing 72.9%, which is the highest among the small
LLM:s.

Cross-Validation: For Mistral 7B and Llama 3
8B, the top-2 performing LLMs, we also performed
a 10-fold cross validation to examine their holistic
performance on the entire dataset. We report the
results in the last column of Table 1, which supports
our observation that Mistral 7B and Llama-3 8B as
the top-performing small LLMs.

In Task Decomposition we found that Gemini-
Pro demonstrates a significantly worse perfor-
mance than GPT-4, which we suspect because
Gemini-Pro has much fewer parameters compared
to GPT-4. Small LLMs saw performance gains
with naive sentence decomposition, revealing lim-
itations in their inherent task-breaking abilities.
However, this technique was detrimental to Gemini-
Pro, potentially due to context disruption and syn-
tactic breakage. Additionally, many incorrect cases
arose from subjective phrasing in queries not ex-

LLM Few- Sentence | Sentence
shot Decomp. | Decomp.
(naive) (LLM)
Mistral 7B | 45% 55% 46%
Llama-3 8B | 22.8% | 30% 21.4%
Gemini-Pro | 65% 55% 58%
GPT-4 922% | / /

Table 2: Task Decomposition API Generation Accuracy

actly matching our dataset, such as "starbucks"
versus "starbucks-coffee", likely caused by model
hallucinations from complex contexts.

While fine-tuning improves small LL.M perfor-
mance, they still lag behind GPT-4 and Gemini-Pro.
However, considering cost and offline access limita-
tions of cloud-based models, this performance gap
may be acceptable for some use cases. More specif-
ically, GPT-4 costs around $5 to generate only 50
API calls. More importantly, cloud-based LLMs
become unavailable in the absence of reliable Inter-
net connection.

Additionally, none of the models benefited from
the agentic reflection workflow, and instead have
shown worse results mainly due to hallucination.
Therefore, we judge that agentic reflection is not
effective without a model specifically trained to
performance objective evaluation.

7 Conclusions and Future Work

In this project, we examined the API generation
ability of local small LLMs running on a single
consumer—grade GPU. The experimental results
demonstrate that the small LLMs, after fine-tuning
with limited training data, possess reasonable API
generation ability, but are still significantly worse
than cloud-based LLMs. However, as our goal is to
build a copilot agent for EVs, the local LLMs may
serve as a valid backup for the cloud-based large
LLMs in certain scenarios where internet connec-
tion becomes unavailable.

We also argue that lack of significant perfor-
mance increases from fine-tuning is attributed to
the lack of data: we only have our own synthesized
data for this task. A possible direction for future
work is further fine-tune these small LLMs with a
large dataset and re-evaluate their performances.



8 Division of Labor

8.1 Yuhang Qian

Researched on EV-domain-specific topics to ver-
ify the validity of the project’s scope. Synthesized
and validated dataset and API documentation us-
ing LLM-driven data augmentation to address the
lack of suitable public datasets. Explored various
cloud-based and local LLMs to find suitable can-
didates for local deployment and benchmarking
purposes. Performed prompt engineering for data
generation and single task API generation work-
flows. Performed baseline model performance
benchmark with Gemini-Pro. Researched and im-
plemented agentic reflection workflow to further
improve model performance.

8.2 Kevin Zheng

Explored small large language models for model
selection. Experimented with model setup and fine-
tuning with Colab environments. Refined system
prompts to improve text generation. Benchmarked
Gorilla LLM for single and few-shot API call gen-
eration. Evaluated Mistral and LLaMa on agentic
reflection workflow. Assisted with writing and edit-
ing reports.

8.3 Charlene Yuen

Explored methods for Task Decomposition. Cre-
ated complex task dataset and system prompts. Ex-
perimented with prompt engineering and sentence
decomposition methods on complex tasks. Evalu-
ated above methods on Mistral, Llama, and Gemini
as a benchmark. Assisted with report writing.

8.4 Tianyu Bai

Initially explored decomposed prompting tech-
niques to perform Task Decomposition. Subse-
quently, worked on training and fine-tuning LL.Ms
to generating Single Task API calls. Implemented
model fine-tune using supervised fine-tuning tech-
nique with LoRa applied, and model evaluation
based on accuracy metrics. To enhance model per-
formance, proposed and applied strategies such as
selective categorical data training, early stopping,
and cross-validation.

8.5 Enyu Zhao

Explored small large language models for model
selection. Experimented with model setup and fine-
tuning with Colab environments. Tested the per-
formance of Mistral 7B in Task Decomposition.

Benchmarked the performance of GPT-4 on Single
Task and Task Decomposition. Report writing and
organization.
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9 Appendix

9.1 Detailed System Prompt

9.1.1 API Documentation

We provide a link to it as it won’t fit in the ACL
template. https://drive.google.com/file/d/
1aizZB4vUr4ayQrBxIXsKnxdgRgx_xsPo/view?
usp=drive_link.

9.1.2 System Prompt

Single Task:

The link to the .txt file of the prompt: https://
drive.google.com/file/d/1J1Jj7XN5aF6J3_
GF1_suKxU1VG7_wUy0O/view?usp=sharing

You are a copilot for an electric vehicle, all you
can do is to generate API calls starting with GET.
Generate the api call based on the prompt below,
don’t say anything else, just output the api call
starting with GET based on the API documentation
above, and these two example below:

Example 1:
Q: Can you play some music for roadtrips?
A:

GET /vehicle/infotainment/music ?mood=roadtrip

Example 2:
Q: Navigate to Yellow Stone National Park.
A:
GET /vehicle/navigation/destination? ad-
dress=yellow+stone+national+park

Some formatting rules include:

1. if the prompt includes spaces, replace it with

n,n

+", so "Los Angeles" becomes "los+angeles"
2. Use lower case only for parameter values

3. Don’t include anything else, just generate the
api call starting with GET

This is the API format and the category details:
GET /vehicle/<category>/<function>

Task Decomposition:

The link to the .txt file of the prompt:
https://drive.google.com/file/d/
1JDOQJPZrhWsmUYCvNeXEug6QTz1liwzPy/view?
usp=sharing

You are a copilot for an electric vehicle, all you
can do is to generate API calls starting with GET.

Generate the api call based on the prompt below,
don’t say anything else, just output the api calls
starting with GET based on the API documentation
above.

You will need to provide a list of API calls sepa-
rated by commas as a response to a series of ques-
tions and commands.

Ensure that you only include valid API calls and
parameters from the documentation.

Here are two examples below:

Example 1:
Q: "Play some jazz music and increase the
volume."
A:
GET /vehicle/infotainment/music?genre=jazz,
GET /vehicle/infotainment/volume?control=increase

Example 2:
Q: Activate the fog lights, search for the near-
est charging station, and get the tire pressure.
A: GET /vehicle/control/exterior?action=foglight-
on,
GET /vehicle/navigation/search?
query=charging+station&sort=current,
GET /vehicle/status/tires

Some formatting rules include:

1. if the prompt includes spaces, replace it with
"+", so "Los Angeles" becomes "los+angeles"

2. Use lower case only for parameter values

3. Don’t include anything else, just generate the
api call starting with GET

4. Use the exact wording as in the question for
the values for parameters when applicable.

5. When multiple commands result in multiple
parameters for the same endpoint and func-
tion, include them in the same API call.

6. Do not include any irrelevant API calls not in
the question.

This is the API format and the category details:

GET /vehicle/<category>/<function>,GET
/vehicle/<category>/<function>,....,GET  /vehi-
cle/<category>/<function>
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